Search results for "phononic crystal"
showing 10 items of 11 documents
Experimental Observation of a Large Low-Frequency Band Gap in a Polymer Waveguide
2018
The quest for large and low-frequency band gaps is one of the principal objectives pursued in a number of engineering applications, ranging from noise absorption to vibration control, and to seismic wave abatement. For this purpose, a plethora of complex architectures (including multiphase materials) and multiphysics approaches have been proposed in the past, often involving difficulties in their practical realization. To address the issue of proposing a material design that enables large band gaps using a simple configuration, in this study we propose an easy-to-manufacture design able to open large, low-frequency complete Lamb band gaps exploiting a suitable arrangement of masses and stif…
Superconducting tunnel junction fabrication on three-dimensional topography based on direct laser writing
2020
Superconducting junctions are widely used in a multitude of applications ranging from quantum information science and sensing to solidstate cooling. Traditionally, such devices must be fabricated on flat substrates using standard lithographic techniques. In this study, we demonstrate a highly versatile method that allows for superconducting junctions to be fabricated on a more complex topography. It is based on maskless direct laser writing and two-photon lithography, which allows writing in 3D space. We show that high-quality normal metal–insulator–superconductor tunnel junctions can be fabricated on top of a 20-lm-tall three-dimensional topography. Combined with conformal resist coating m…
Intregrating metallic wiring with three-dimensional polystyrene colloidal crystals using electron-beam lithography and three-dimensional laser lithog…
2017
We demonstrate a method to fabricate narrow, down to a few micron wide metallic leads on top of a three-dimensional colloidal crystal self-assembled from polystyrene (PS) nanospheres of diameter 260 nm, using electron-beam lithography. This fabrication is not straightforward due to the fact that PS nanospheres cannot usually survive the harsh chemical treatments required in the development and lift-off steps of electron-beam lithography. We solve this problem by increasing the chemical resistance of the PS nanospheres using an additional electron-beam irradiation step, which allows the spheres to retain their shape and their self-assembled structure, even after baking to a temperature of 16…
Narrow Band Solid-Liquid Composite Arrangements: Alternative Solutions for Phononic Crystal-Based Liquid Sensors
2019
Periodic elastic composite structures attract great attention. They offer the ability to design artificial properties to advance the control over the propagation of elastic/acoustic waves. In previous work, we drew attention to composite periodic structures comprising liquids. It was shown that the transmission spectrum of the structure, specifically a well-isolated peak, follows the material properties of liquid constituent in a distinct manner. This idea was realized in several liquid sensor concepts that launched the field of phononic crystal liquid sensors. In this work we introduce a novel concept&mdash
Studies of two-dimensional and three-dimensional phononic crystal structures
2016
This thesis focuses on studying phononic crystal structures. More specifically, it is aimed at fabrication and measurement of thermal properties of two-dimensional (2D) periodic microstructures and three-dimensional (3D) nanostructures. There is great interest in understanding, manipulating and considering application perspective of minimizing of thermal transport in periodic structures. Periodic structures have been studied more on their optical properties, but this thesis places emphasis on their application of manipulating heat. A process of fabricating two-dimensional hole array phononic (2D PnC) structures is described here. It consists of membrane preparation, superconductor-insulator…
Fabrication of 3-D phononic crystals for thermal transport management
2016
Thermal transport is an important physical phenomenon, and it has recently become even more relevant for the reduction of energy losses and the increase of efficiency in novel devices based on thermoelectricity [1]. Significant reduction of thermal conduction was recently achieved by coherent modification of phonon modes [2], with the help of periodic phononic crystal structures. However, currently the experimental studies have only been performed for two-dimensional (2-D) nanostructures. Theoretically, the magnitude of control of thermal transport should be even stronger in three-dimensional (3-D) phononic crystal structures. For that reason, the question arises how to fabricate the desire…
Low-Temperature Coherent Thermal Conduction in Thin Phononic Crystal Membranes
2016
In recent years, the idea of controlling phonon thermal transport coherently using phononic crystals has been introduced. Here, we extend our previous numerical studies of ballistic low-temperature heat transport in two-dimensional hole-array phononic crystals, and concentrate on the effect of the lattice periodicity. We find that thermal conductance can be either enhanced or reduced by large factors, depending on the the lattice period. Analysis shows that both the density of states and the average group velocity are strongly affected by the periodic structuring. The largest effect for the reduction seen for larger period structures comes from the strong reduction of the group velocities, …
A Composite Phononic Crystal Design for Quasiparticle Lifetime Enhancement in Kinetic Inductance Detectors
2020
A nanoscale phononic crystal filter (reflector) is designed for a kinetic inductance detector where the reflection band is matched to the quasiparticle recombination phonons with the aim to increase quasiparticle lifetime in the superconducting resonator. The inductor is enclosed by a 1-μm-wide phononic crystal membrane section with two simple hole patterns that each contain a partial spectral gap for various high-frequency phonon modes. The phononic crystal is narrow enough for low-frequency thermal phonons to propagate unimpeded. With 3D phonon scattering simulation over a 40 dB attenuation in transmitted power is found for the crystal, which is estimated to give a lifetime enhancement of…
Minimizing coherent thermal conductance by controlling the periodicity of two-dimensional phononic crystals
2019
Periodic hole array phononic crystals (PnC) can strongly modify the phonon dispersion relations, and have been shown to influence thermal conductance coherently, especially at low temperatures where scattering is suppressed. One very important parameter influencing this effect is the period of the structure. Here, we measured the sub-Kelvin thermal conductance of nanofabricated PnCs with identical hole filling factors, but three different periodicities, 4, 8, and 16 $\mu$m, using superconducting tunnel junction thermometry. We found that all the measured samples can suppress thermal conductance by an order of magnitude, and have a lower thermal conductance than the previously measured small…
Low temperature heat capacity of phononic crystal membranes
2016
Phononic crystal (PnC) membranes are a promising solution to improve sensitivity of bolometric sensor devices operating at low temperatures. Previous work has concentrated only on tuning thermal conductance, but significant changes to the heat capacity are also expected due to the modification of the phonon modes. Here, we calculate the area-specific heat capacity for thin (37.5 - 300 nm) silicon and silicon nitride PnC membranes with cylindrical hole patterns of varying period, in the temperature range 1 - 350 mK. We compare the results to two- and three-dimensional Debye models, as the 3D Debye model is known to give an accurate estimate for the low-temperature heat capacity of a bulk sam…